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This chapter is about classes of statistical distributions
that deliver extreme events, and how we should deal with
them for both statistical inference and decision making.
It draws on the author’s multi-volume series, Incerto
[1] and associated technical research program, which is
about how to live in a real world with a structure of
uncertainty that is too complicated for us.

The Incerto tries to connects five different fields
related to tail probabilities and extremes: mathematics,
philosophy, social science, contract theory, decision the-
ory, and the real world. (If you wonder why contract
theory, the answer is at the end of this discussion:
option theory is based on the notion of contingent and
probabilistic contracts designed to modify and share
classes of exposures in the tails of the distribution; in
a way option theory is mathematical contract theory).

The main idea behind the project is that while there
is a lot of uncertainty and opacity about the world, and
incompleteness of information and understanding, there
is little, if any, uncertainty about what actions should be
taken based on such incompleteness, in a given situation.

I. ON THE DIFFERENCE BETWEEN THIN AND FAT TAILS

We begin with the notion of fat tails and how it relates to
extremes using the two imaginary domains of Mediocristan
(thin tails) and Extremistan (fat tails). In Mediocristan, no
observation can really change the statistical properties. In Ex-
tremistan, the tails (the rare events) play a disproportionately
large role in determining the properties.

Let us randomly select two people in Mediocristan with a
(very unlikely) combined height of 4.1 metres a tail event.
According to the Gaussian distribution (or its siblings), the
most likely combination of the two heights is 2.05 metres and
2.05 metres.

Simply, the probability of exceeding 3 sigmas is 0.00135.
The probability of exceeding 6 sigmas, twice as much, is 9.86∗
10−10. The probability of two 3-sigma events occurring is
1.8 ∗ 10−6. Therefore the probability of two 3-sigma events
occurring is considerably higher than the probability of one
single 6-sigma event. This is using a class of distribution that
is not fat-tailed. Figure I below shows that as we extend the
ratio from the probability of two 3-sigma events divided by

This lecture was given at Darwin College on January 27 2017, as part
of the Darwin College Series on Extremes. The author extends the warmest
thanks to D.J. Needham [and ... who patiently and accurately transcribed the
ideas into a coherent text]. The author is also grateful towards Ole Peters who
corrected some mistakes.

the probability of a 6-sigma event, to the probability of two
4-sigma events divided by the probability of an 8-sigma event,
i.e., the further we go into the tail, we see that a large deviation
can only occur via a combination (a sum) of a large number
of intermediate deviations: the right side of Figure I. In other
words, for something bad to happen, it needs to come from
a series of very unlikely events, not a single one. This is the
logic of Mediocristan.

Let us now move to Extremistan, where a Pareto distribution
prevails (among many), and randomly select two people with
combined wealth of £36 million. The most likely combination
is not £18 million and £18 million. It is approximately
£35,999,000 and £1,000. This highlights the crisp distinction
between the two domains; for the class of subexponential
distributions, ruin is more likely to come from a single extreme
event than from a series of bad episodes. This logic underpins
classical risk theory as outlined by Lundberg early in the 20th

Century[2] and formalized by Cramer[3], but forgotten by
economists in recent times. This indicates that insurance can
only work in Medocristan; you should never write an uncapped
insurance contract if there is a risk of catastrophe. The point
is called the catastrophe principle.

As I said earlier, with fat tail distributions, extreme events
away from the centre of the distribution play a very large
role. Black swans are not more frequent, they are more
consequential. The fattest tail distribution has just one very
large extreme deviation, rather than many departures form the
norm. Figure 3 shows that if we take a distribution like the
Gaussian and start fattening it, then the number of departures
away from one standard deviation drops. The probability of
an event staying within one standard deviation of the mean is
68 per cent. As we the tails fatten, to mimic what happens
in financial markets for example, the probability of an event
staying within one standard deviation of the mean rises to
between 75 and 95 per cent. When we fatten the tails we have
higher peaks, smaller shoulders, and higher incidence of very
large deviation.

II. A (MORE ADVANCED) CATEGORIZATION AND ITS
CONSEQUENCES

Let us now provide a taxonomy of fat tails. There are three
types of fat tails, as shown in Figure 4, based on mathematical
properties. First there are entry level fat tails. This is any
distribution with fatter tails than the Gaussian i.e. with more
observations within one sigma and with kurtosis (a function of
the fourth central moment) higher than three. Second, there are
subexponential distributions satisfying our thought experiment

1
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Fig. 1. Ratio of two occurrences of K vs one of 2K for a Gaussian
distribution. The larger the K, that is, the more we are in the tails, the more
likely the event is likely to come from 2 independent realizations of K (hence
P (K)2, and the less from a single event of magnitude 2K.
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Fig. 2. The law of large numbers, that is how long it takes for the sample
mean to stabilize, works much more slowly in Extremistan (here a Pareto
distribution with 1.13 tail exponent, corresponding to the "Pareto 80-20"

earlier. Unless they enter the class of power laws, these are
not really fat tails because they do not have monstrous impacts
from rare events. Level three, what is called by a variety of
names, the power law, or slowly varying class, or "Pareto tails"
class correspond to real fat tails.

Working from the bottom left of Figure 4, we have the
degenerate distribution where there is only one possible out-
come i.e. no randomness and no variation. Then, above it,
there is the Bernoulli distribution which has two possible
outcomes. Then above it there are the two Gaussians. There is
the natural Gaussian (with support on minus and plus infinity),
and Gaussians that are reached by adding random walks (with
compact support, sort of). These are completely different
animals since one can deliver infinity and the other cannot
(except asymptotically). Then above the Gaussians there is
the subexponential class. Its members all have moments, but
the subexponential class includes the lognormal, which is one
of the strangest things on earth because sometimes it cheats
and moves up to the top of the diagram. At low variance, it is
thin-tailed, at high variance, it behaves like the very fat tailed.

Membership in the subexponential class satisfies the Cramer
condition of possibility of insurance (losses are more likely to
come from many events than a single one), as we illustrated
in Figure I. More technically it means that the expectation of
the exponential of the random variable exists.1

Once we leave the yellow zone, where the law of large num-
bers largely works, then we encounter convergence problems.
Here we have what are called power laws, such as Pareto laws.
And then there is one called Supercubic, then there is Levy-
Stable. From here there is no variance. Further up, there is no
mean. Then there is a distribution right at the top, which I call
the Fuhgetaboudit. If you see something in that category, you
go home and you dont talk about it. In the category before
last, below the top (using the parameter α, which indicates
the "shape" of the tails, for α < 2 but not α ≤ 1), there is no
variance, but there is the mean absolute deviation as indicator
of dispersion. And recall the Cramer condition: it applies up
to the second Gaussian which means you can do insurance.

The traditional statisticians approach to fat tails has been
to assume a different distribution but keep doing business as
usual, using same metrics, tests, and statements of significance.
But this is not how it really works and they fall into logical
inconsistencies. Once we leave the yellow zone, for which
statistical techniques were designed, things no longer work as
planned. Here are some consequences of moving out of the
yellow zone:

1) The law of large numbers, when it works, works too
slowly in the real world (this is more shocking than you
think as it cancels most statistical estimators). See Figure
2.

2) The mean of the distribution will not correspond to the
sample mean. In fact, there is no fat tailed distribution in
which the mean can be properly estimated directly from
the sample mean, unless we have orders of magnitude
more data than we do (people in finance still do not
understand this).

3) Standard deviations and variance are not useable. They
fail out of sample.
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Fig. 3. Where do the tails start? Fatter and fatter fails through perturbation of the scale parameter σ for a Gaussian, made more stochastic (instead of being
fixed). Some parts of the probability distribution gain in density, others lose. Intermediate events are less likely, tails events and moderate deviations are more
likely. We can spot the crossovers a1 through a4. The "tails" proper start at a4 on the right and a1on the left.

4) Beta, Sharpe Ratio and other common financial metrics
are uninformative.

5) Robust statistics is not robust at all.
6) The so-called "empirical distribution" is not empirical

(as it misrepresents the expected payoffs in the tails).
7) Linear regression doesn’t work.
8) Maximum likelihood methods work for parameters

(good news). We can have plug in estimators in some
situations.

9) The gap between dis-confirmatory and confirmatory em-
piricism is wider than in situations covered by common
statistics i.e. difference between absence of evidence and
evidence of absence becomes larger.

10) Principal component analysis is likely to produce false
factors.

11) Methods of moments fail to work. Higher moments are
uninformative or do not exist.

12) There is no such thing as a typical large deviation:
conditional on having a large move, such move is not
defined.

13) The Gini coefficient ceases to be additive. It becomes
super-additive. The Gini gives an illusion of large con-
centrations of wealth. (In other words, inequality in a
continent, say Europe, can be higher than the average
inequality of its members) [5].

Let us illustrate one of the problem of thin-tailed thinking
with a real world example. People quote so-called "empirical"
data to tell us we are foolish to worry about ebola when
only two Americans died of ebola in 2016. We are told that
we should worry more about deaths from diabetes or people
tangled in their bedsheets. Let us think about it in terms
of tails. But, if we were to read in the newspaper that 2
billion people have died suddenly, it is far more likely that
they died of ebola than smoking or diabetes or tangled in
their bedsheets? This is rule number one. "Thou shalt not
compare a multiplicative fat-tailed process in Extremistan
in the subexponential class to a thin-tailed process that has
Chernov bounds from Mediocristan". This is simply because
of the catastrophe principle we saw earlier, illustrated in Figure
I. It is naïve empiricism to compare these processes, to suggest
that we worry too much about ebola and too little about
diabetes. In fact it is the other way round. We worry too
much about diabetes and too little about ebola and other
multiplicative effects. This is an error of reasoning that comes
from not understanding fat tails –sadly it is more and more
common.

Let us now discuss the law of large numbers which is the
basis of much of statistics. The law of large numbers tells us
that as we add observations the mean becomes more stable,
the rate being the square of n. Figure 2 shows that it takes
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Fig. 4. The tableau of Fat tails, along the various classifications for convergence purposes (i.e., convergence to the law of large numbers, etc.) and gravity
of inferential problems. Power Laws are in white, the rest in yellow. See Embrechts et al [4].

many more observations under a fat-tailed distribution (on the
right hand side) for the mean to stabilize.

The "equivalence" is not straightforward.
One of the best known statistical phenomena is Paretos

80/20 e.g. twenty per cent of Italians own 80 per cent of the
land. Table [?] shows that while it takes 30 observations in
the Gaussian to stabilize the mean up to a given level, it takes
1011 observations in the Pareto to bring the sample error down
by the same amount (assuming the mean exists).

Despite this being trivial to compute, few people compute
it. You cannot make claims about the stability of the sample
mean with a fat tailed distribution. There are other ways to do
this, but not from observations on the sample mean.

III. EPISTEMOLOGY AND INFERENTIAL ASYMMETRY

Let us now examine the epistemological consequences.
Figure 5 illustrates the Masquerade Problem (or Central
Asymmetry in Inference). On the left is a degenerate random
variable taking seemingly constant values with a histogram
producing a Dirac stick.

We have known at least since Sextus Empiricus that we
cannot rule out degeneracy but there are situations in which
we can rule out non-degeneracy. If I see a distribution that
has no randomness, I cannot say it is not random. That is,
we cannot say there are no black swans. Let us now add
one observation. I can now see it is random, and I can
rule out degeneracy. I can say it is not not random. On the
right hand side we have seen a black swan, therefore the
statement that there are no black swans is wrong. This is the
negative empiricism that underpins Western science. As we
gather information, we can rule things out. The distribution
on the right can hide as the distribution on the left, but the
distribution on the right cannot hide as the distribution on
the left (check). This gives us a very easy way to deal with
randomness. Figure 6 generalizes the problem to how we can
eliminate distributions.

If we see a 20 sigma event, we can rule out that the
distribution is thin-tailed. If we see no large deviation, we
can not rule out that it is not fat tailed unless we understand
the process very well. This is how we can rank distributions.
If we reconsider Figure 4 we can start seeing deviation and
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Fig. 5. The Masquerade Problem (or Central Asymmetry in Inference). To the left, a degenerate random variable taking seemingly constant values,
with a histogram producing a Dirac stick. One cannot rule out nondegeneracy. But the right plot exhibits more than one realization. Here one can rule out
degeneracy. This central asymmetry can be generalized and put some rigor into statements like "failure to reject" as the notion of what is rejected needs to
be refined. We produce rules in Chapter ??.
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Fig. 6. "The probabilistic veil". Taleb and Pilpel [6] cover the point from an epistemological standpoint with the "veil" thought experiment by which an
observer is supplied with data (generated by someone with "perfect statistical information", that is, producing it from a generator of time series). The observer,
not knowing the generating process, and basing his information on data and data only, would have to come up with an estimate of the statistical properties
(probabilities, mean, variance, value-at-risk, etc.). Clearly, the observer having incomplete information about the generator, and no reliable theory about what
the data corresponds to, will always make mistakes, but these mistakes have a certain pattern. This is the central problem of risk management.

ruling out progressively from the bottom. These are based
on how they can deliver tail events. Ranking distributions
becomes very simple because if someone tells you there is
a ten-sigma event, it is much more likely that they have the
wrong distribution than it is that you really have ten-sigma
event. Likewise, as we saw, fat tailed distributions do not
deliver a lot of deviation from the mean. But once in a while
you get a big deviation. So we can now rule out what is not
Mediocristan. We can rule out where we are not we can rule
out Mediocristan. I can say this distribution is fat tailed by
elimination. But I can not certify that it is thin tailed. This is
the black swan problem.

IV. PRIMER ON POWER LAWS

Let us now discuss the intuition behind the Pareto Law. It
is simply defined as: say X is a random variable. For x suf-
ficently large, the probability of exceeding 2x divided by the
probability of exceeding x is no different from the probability

of exceeding 4x divided by the probability of exceeding 2x,
and so forth. This property is called "scalability".2

So if we have a Pareto (or Pareto-style) distribution, the ratio
of people with £16 million compared to £8 million is the same
as the ratio of people with £2 million and £1 million. There
is a constant inequality. This distribution has no characteristic
scale which makes it very easy to understand. Although this
distribution often has no mean and no standard deviation we
still understand it. But because it has no mean we have to
ditch the statistical textbooks and do something more solid,
more rigorous.

A Pareto distribution has no higher moments: moments
either do not exist or become statistically more and more
unstable. So next we move on to a problem with economics
and econometrics. In 2009 I took 55 years of data and
looked at how much of the kurtosis (a function of the fourth
moment) came from the largest observation –see Table III. For
a Gaussian the maximum contribution over the same time span
should be around .008 ± .0028. For the S&P 500 it was about
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TABLE I
CORRESPONDING nα , OR HOW MANY FOR EQUIVALENT α-STABLE

DISTRIBUTION. THE GAUSSIAN CASE IS THE α = 2. FOR THE CASE WITH
EQUIVALENT TAILS TO THE 80/20 ONE NEEDS 1011 MORE DATA THAN THE

GAUSSIAN.

α nα n
β=± 1

2
α nβ=±1

α

Symmetric Skewed One-tailed

1 Fughedaboudit - -

9
8

6.09× 1012 2.8× 1013 1.86× 1014

5
4

574,634 895,952 1.88× 106

11
8

5,027 6,002 8,632

3
2

567 613 737

13
8

165 171 186

7
4

75 77 79

15
8

44 44 44

2 30. 30 30

TABLE II
AN EXAMPLE OF A POWER LAW

Richer than 1 million 1 in 62.5
Richer than 2 million 1 in 250
Richer than 4 million 1 in 1,000
Richer than 8 million 1 in 4,000
Richer than 16 million 1 in 16,000
Richer than 32 million 1 in ?

80 per cent. This tells us that we dont know anything about
kurtosis. Its sample error is huge; or it may not exist so the
measurement is heavily sample dependent. If we dont know
anything about the fourth moment, we know nothing about the
stability of the second moment. It means we are not in a class
of distribution that allows us to work with the variance, even
if it exists. This is finance.

For silver futures, in 46 years 94 per cent of the kurtosis
came from one observation. We cannot use standard statistical

TABLE III
KURTOSIS FROM A SINGLE OBSERVATION FOR FINANCIAL DATA

MAX
(
X4

t−∆Ti)
n
i=0∑n

i=0 X4
t−∆Ti

Security Max Q Years.
Silver 0.94 46.
SP500 0.79 56.
CrudeOil 0.79 26.
Short Sterling 0.75 17.
Heating Oil 0.74 31.
Nikkei 0.72 23.
FTSE 0.54 25.
JGB 0.48 24.
Eurodollar Depo 1M 0.31 19.
Sugar 0.3 48.
Yen 0.27 38.
Bovespa 0.27 16.
Eurodollar Depo 3M 0.25 28.
CT 0.25 48.
DAX 0.2 18.

methods with financial data. GARCH (a method popular in
academia) does not work because we are dealing with squares.
The variance of the squares is analogous to the fourth moment.
We do not know the variance. But we can work very easily
with Pareto distributions. They give us less information, but
nevertheless, it is more rigorous if the data are uncapped or if
there are any open variables.

Table III, for financial data, debunks all the college text-
books we are currently using. A lot of econometrics that
deals with squares goes out of the window. This explains why
economists cannot forecast what is going on they are using the
wrong methods. It will work within the sample, but it will not
work outside the sample. If we say that variance (or kurtosis)
is infinite, we are not going to observe anything that is infinite
within a sample.
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Fig. 7. A Monte Carlo experiment that shows how spurious correlations and
covariances are more acute under fat tails. Principal Components ranked by
variance for 30 Gaussian uncorrelated variables, n=100 (above) and 1000 data
points, and principal Components ranked by variance for 30 Stable Distributed
( with tail α = 3

2
, symmetry β = 1, centrality µ = 0, scale σ = 1) (below).

Both are "uncorrelated" identically distributed variables, n=100 and 1000 data
points.

Principal component analysis (Figure 7) is a dimension
reduction method for big data and it works beautifully with
thin tails. But if there is not enough data there is an illusion
of a structure. As we increase the data (the n variables),
the structure becomes flat. In the simulation, the data that
has absolutely no structure. We have zero correlation on the
matrix. For a fat tailed distribution (the lower section), we
need a lot more data for the spurious correlation to wash out
i.e. dimension reduction does not work with fat tails.
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V. WHERE ARE THE HIDDEN PROPERTIES?

The following summarizes everything that I wrote in the
Black Swan. Distributions can be one-tailed (left or right) or
two-tailed. If the distribution has a fat tail it can be fat tailed
one tail or it can be fat tailed two tails. And if is fat tailed-one
tail, it can be fat tailed left tail or fat tailed right tail.

See Figure 8: if it is fat tailed and we look at the sample
mean, we observe fewer tail events. The common mistake is
to think that we can naively derive the mean in the presence
of one-tailed distributions. But there are unseen rare events
and with time these will fill in. But by definition, they are low
probability events. The trick is to estimate the distribution and
then derive the mean. This is called plug-in estimation, see
Table IV. It is not done by observing the sample mean which
is biased with fat-tailed distributions. This is why, outside a
crisis, the banks seem to make large profits. Then once in a
while they lose everything and more and have to be bailed out
by the taxpayer. The way we handle this is by differentiating
the true mean (which I call "shadow") from the realized mean,
as in the Tableau in Table IV.

We can also do that for the Gini coefficient to estimate the
"shadow" one rather than the naively observed one.

This is what I mean when I say that the "empirical"
distribution is not "empirical".
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Fig. 8. The biases in perception of risks. Bottom: Inverse Turkey Problem
The unseen rare event is positive. When you look at a positively skewed
(antifragile) time series and make inferences about the unseen, you miss the
good stuff an underestimate the benefits. Top: the opposite problem. The
filled area corresponds to what we do not tend to see in small samples, from
insufficiency of points. Interestingly the shaded area increases with model
error.

TABLE IV
SHADOW MEAN, SAMPLE MEAN AND THEIR RATIO FOR DIFFERENT

MINIMUM THRESHOLDS. IN BOLD THE VALUES FOR THE 145K
THRESHOLD. RESCALED DATA. FROM CIRILLO AND TALEB [7]

Thresh.×103 Shadow×107 Sample×107 Ratio
50 1.9511 1.2753 1.5299

100 2.3709 1.5171 1.5628
145 3.0735 1.7710 1.7354
300 3.6766 2.2639 1.6240
500 4.7659 2.8776 1.6561
600 5.5573 3.2034 1.7348

Once we have figured out the distribution, we can estimate
the statistical mean. This works much better than observing
the sample mean. For a Pareto distribution, for instance, 98%
of observations are below the mean. There is a bias in the
mean. But once we know we have a Pareto distribution, we
should ignore the sample mean and look elsewhere.

Note that the field of Extreme Value Theory [?] [4] [8]
focuses on tail properties, not the mean or statistical inference.

VI. RUIN AND PATH DEPENDENCE

Let us finish with path dependence and time probability.
Our grandmothers understand fat tails. These are not so scary;
we figured out how to survive by making rational decisions
based on deep statistical properties.

Path dependence is as follows. If I iron my shirts and then
wash them, I get vastly different results compared to when I
wash my shirts and then iron them. My first work, Dynamic
Hedging [9], was about how traders avoid the "absorbing
barrier" since once you are bust, you can no longer continue:
anything that will eventually go bust will lose all past profits.

The physicists Ole Peters and Murray Gell-Mann [10] shed
new light on this point, and revolutionized decision theory
showing that a key belief since the development of applied
probability theory in economics was wrong. They pointed
out that all economics textbooks make this mistake; the only
exception are by information theorists such as Kelly and
Thorp.

Let us explain ensemble probabilities.
Assume that 100 of us, randomly selected, go to a casino

and gamble. If the 28th person is ruined, this has no impact
on the 29th gambler. So we can compute the casinos return
using the law of large numbers by taking the returns of the
100 people who gambled. If we do this two or three times,
then we get a good estimate of what the casinos edge is. The
problem comes when ensemble probability is applied to us
as individuals. It does not work because if one of us goes
to the casino and on day 28 is ruined, there is no day 29.
This is why Cramer showed insurance could not work outside
what he called the Cramer condition, which excludes possible
ruin from single shocks. Likewise, no individual investor will
achieve the alpha return on the market because no single
investor has infinite pockets (or, as Ole Peters has observed, is
running his life across branching parallel universes). We can
only get the return on the market under strict conditions.

Time probability and ensemble probability are not the same.
This only works if the risk takers has an allocation policy
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Fig. 9. Ensemble probability vs. time probability. The treatment by option
traders is done via the absorbing barrier. I have traditionally treated this in
Dynamic Hedging and Antifragile as the conflation between X (a random
variable) and f(X) a function of said r.v., which may include an absorbing
state.

compatible with the Kelly criterion[11],[12] using logs. Peters
wrote three papers on time probability (one with Gell-Mann)
and showed that a lot of paradoxes disappeared.

Let us see how we can work with these and what is wrong
with the literature. If we visibly incur a tiny risk of ruin, but
have a frequent exposure, it will go to probability one over
time. If we ride a motorcycle we have a small risk of ruin,
but if we ride that motorcycle a lot then we will reduce our
life expectancy. The way to measure this is:

Only focus on the reduction of life expectancy of the
unit assuming repeated exposure at a certain density
or frequency.

Behavioral finance so far makes conclusion from statics not
dynamics, hence misses the picture. It applies trade-offs out
of context and develops the consensus that people irrationally
overestimate tail risk (hence need to be "nudged" into taking
more of these exposures). But the catastrophic event is an
absorbing barrier. No risky exposure can be analyzed in
isolation: risks accumulate. If we ride a motorcycle, smoke,
fly our own propeller plane, and join the mafia, these risks
add up to a near-certain premature death. Tail risks are not a
renewable resource.

Fig. 10. A hierarchy for survival. Higher entities have a longer life expectancy,
hence tail risk matters more for these.

Every risk taker who survived understands this. Warren
Buffett understands this. Goldman Sachs understands this.
They do not want small risks, they want zero risk because that
is the difference between the firm surviving and not surviving
over twenty, thirty, one hundred years. This attitude to tail risk
can explain that Goldman Sachs is 149 years old –it ran as
partnership with unlimited liability for approximately the first
130 years, but was bailed out once in 2009, after it became
a bank. This is not in the decision theory literature but we
(people with skin in the game) practice it every day. We take
a unit, look at how long a life we wish it to have and see by
how much the life expectancy is reduced by repeated exposure.

The psychological literature focuses on one-single
episode exposures and narrowly defined cost-benefit
analyses. Some analyses label people as paranoid for
overestimating small risks, but don’t get that if we had
the smallest tolerance for collective tail risks, we would
not have made it for the past several million years.

Next let us consider layering, why systemic risks are in a
different category from individual, idiosyncratic ones. Look
at Figure 10: the worst-case scenario is not that an individual
dies. It is worse if your family, friends and pets die. It is worse
if you die and your arch enemy survives. They collectively
have more life expectancy lost from a terminal tail event.

So there are layers. The biggest risk is that the entire
ecosystem dies. The precautionary principle puts structure
around the idea of risk for units expected to survive.

Ergodicity in this context means that your analysis for
ensemble probability translates into time probability. If it
doesn’t, ignore ensemble probability altogether.
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VII. WHAT TO DO?

To summarize, we first need to make a distinction be-
tween Mediocristan and Extremistan, two separate domains
that never overlap with one another. If we dont make that
distinction, we dont have any valid analysis. Second, if we
dont make the distinction between time probability (path
dependent) and ensemble probability (path independent) we
dont have a valid analysis.

The next phase of the Incerto project is to gain understand-
ing of fragility, robustness, and, eventually, anti-fragility. Once
we know something is fat-tailed, we can use heuristics to see
how an exposure there reacts to random events: how much
is a given unit harmed by them. It is vastly more effective
to focus on being insulated from the harm of random events
than try to figure them out in the required details (as we saw
the inferential errors under fat tails are huge). So it is more
solid, much wiser, more ethical, and more effective to focus on
detection heuristics and policies rather than fabricate statistical
properties.

The beautiful thing we discovered is that everything that is
fragile has to present a concave exposure [13] similar –if not
identical –to the payoff of a short option, that is, a negative
exposure to volatility. It is nonlinear, necessarily. It has to
have harm that accelerates with intensity, up to the point of
breaking. If I jump 10m I am harmed more than 10 times than
if I jump one metre. That is a necessary property of fragility.
We just need to look at acceleration in the tails. We have built
effective stress testing heuristics based on such an option-like
property [14].

In the real world we want simple things that work [15];
we want to impress our accountant and not our peers. (My
argument in the latest instalment of the Incerto, Skin in the
Game is that systems judged by peers and not evolution rot
from overcomplication). To survive we need to have clear
techniques that map to our procedural intuitions.

The new focus is on how to detect and measure convexity
and concavity. This is much, much simpler than probability.

NOTES
1Let X be a random variable. The Cramer condition: for all r > 0,

E
(
erX

)
< +∞.

2More formally: let X be a random variable belonging to the class of
distributions with a "power law" right tail:

P(X > x) ∼ L(x)x−α (1)

where L : [xmin,+∞) → (0,+∞) is a slowly varying function, defined as
limx→+∞

L(kx)
L(x)

= 1 for any k > 0. We can apply the same to the negative
domain.
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